
NVIDIA® is a registered trademark of the NVIDIA Corporation. PathScale® is a registered trademark of Pathscale Inc.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 1 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

PathScale ENZO

User Guide Version 1.1

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 2 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Table of Contents
1 Introduction.. 5

1.1 PathScale ENZO™ Overview.. 5
1.2 ENZO™ Runtime Overview... 7
1.3 PathScale ENZO™ Code Generation..7
1.4 Scope of this Document... 7

2 OpenACC.. 7
2.1 The OpenACC accelerated regions...7

3 OpenMP.. 9
4 Remote Procedure Call and Data management..10
5 ENZO™ Memory Model.. 11
6 OpenACC Directives.. 11

6.1 Introduction.. 11
6.2 Syntax of the OpenACC directives..12
6.3 Directives for offloading code regions to HWA...13

6.3.1 parallel Directive.. 13
6.3.2 kernels Directive.. 15

6.4 Data Allocation and Transfer.. 17
6.4.1 data Directive... 17
6.4.2 enter data / exit data directives..18
6.4.3 declare directive... 20
6.4.4 update directive... 21
6.4.5 Subarrays in OpenACC...22

6.5 Loop directive.. 24
6.6 Asynchronous execution.. 25
6.7 Procedure calls.. 26
6.8 Nested parallelism... 27
6.9 Atomic operations.. 28

7 OpenMP directives.. 28
7.1 Introduction.. 28
7.2 Syntax of OpenMP directives...29
7.3 Parallel directive.. 30
7.4 Worksharing constructs... 31

7.4.1 Loop construct... 31
7.4.2 Sections construct... 32
7.4.3 Single construct... 33
7.4.4 Workshare construct.. 33

7.5 Device constructs.. 33
7.5.1 Target directive.. 34
7.5.2 Teams directive.. 34
7.5.3 Distribute directive... 35

7.6 Data allocation and transfers...35
7.6.1 Target data directive.. 35
7.6.2 Target update directive..36
7.6.3 Declare target directive.. 37
7.6.4 Threadprivate directive.. 38
7.6.5 OpenMP array subscripts.. 38

7.7 Tasking constructs... 39
7.7.1 task construct.. 39
7.7.2 taskyield directive.. 40

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 3 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

7.7.3 taskwait directive... 40
7.7.4 taskgroup directive... 41

7.8 Synchronization... 41
7.8.1 master construct.. 41
7.8.2 flush construct... 42
7.8.3 critical construct... 42
7.8.4 barrier construct... 42
7.8.5 atomic construct... 43
7.8.6 ordered construct... 43

7.9 SIMD.. 43
7.9.1 simd directive... 43
7.9.2 declare simd directive.. 44

7.10 Cancellation... 45
8 Supported Languages... 46
9 Compiling OpenACC and OpenMP Applications...46

9.1 Overview.. 46
9.2 Common Command Line Parameters...47

10 Running OpenACC and OpenMP Applications..47
10.1 Launching the Application.. 47

11 Improved code generation and performance...47
11.1 Loops performance optimizations..48

11.1.1 OpenACC kernels region... 48
11.1.1.1 OpenACC independent clause..48
11.1.1.2 OpenACC seq clause..48

11.1.2 reduction.. 49
11.1.3 OpenACC tile clause...51
11.1.4 Levels of parallelism..52

11.1.4.1 OpenACC levels of parallelism..52
11.1.4.2 OpenMP levels of parallelism..53
11.1.4.3 Levels of parallelism: examples...53

11.1.5 Collapse clause... 54
11.2 OpenACC Cache management...55

12 Environment variables... 56
12.1 OpenACC environment variables..56
12.2 OpenMP environment variables...56

13 Runtime API... 56
13.1 OpenACC Runtime API... 56
13.1 OpenMP Runtime API.. 57

14 ENZO™ Supported HWA.. 57
14.1.1 Hardware Accelerators.. 57

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 4 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

1 Introduction
The PathScale ENZO™ Suite brings the power of the OpenACC directives together with direct code generation
for NVIDIA Tesla™ GPU. This approach leverages the strength of the GPU as a hardware accelerator (HWAs) to
replace traditional SIMD computing units.

PathScale ENZO using OpenACC directives allow the programmer to write hardware independent applications
where hardware specific codes are dissociated from the legacy code as additional software plug-ins.

1.1 PathScale ENZO Overview
PathScale ENZO currently supports OpenACC and OpenMP directives for Fortran, C and C++ which in
combination with the ENZO runtime allows seamless execution of heterogeneous applications.

To accelerate the execution of your application with ENZO, the first step is to identify the regions of the application
source code which is suitable for the HWA target. Those will then become either parallel or kernels regions or (see
Section 2.1) using the OpenACC directives. The hardware-accelerated versions of the regions are defined in
their specific language i.e. Fortran and using the OpenACC programming model.

The OpenACC/OpenMP annotated source code is parsed by the PathScale Fortran, C and C++ frontends to
translate the OpenACC/OpenMP directives into calls to the ENZO runtime API. The ENZO runtime API is in
charge of managing the concurrent execution of the host and device code regions.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 5 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Figure 1 - PathScale ENZO Compilation Process

Figure 1 shows the compilation and code generation flow of an ENZO application using HMPP accelerator
directives. The path is identical to ENZO OpenACC and OpenMP application. The unified flow for both the native
code and HWA code until the final stage when the targets are lowered down to native heterogeneous assembly.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 6 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

1.2 ENZO Runtime Overview
The ENZO runtime API is in charge of the execution of the remote procedure calls to the HWA. Linked to the
application, this library allocates memory and initializes the HWA in order to allow the execution of the kernels. It
relays communications between the host and the HWA and manages the asynchronous execution of kernels and
data transfers.

1.3 PathScale ENZO Code Generation
PathScale ENZO does direct to native HWA instruction code generation to maximize performance and
optimization for your ENZO applications. The entire process is a complete unified solution using no source-to-
source conversion and PathScale ENZO runtime handles the entire offloading process including execution and
data management.

1.4 Scope of this Document
This manual covers the PathScale ENZO runtime, OpenACC and OpenMP directives.

For documentation on the compiler CLI interface and installation instructions please reference PathScale ENZO
CLI Guide and PathScale ENZO Installation notes.

2 OpenACC
OpenACC is based on the concept of source code directives that specify which parts of the original program
must/may be targeted to execution on the HWA . The ENZO runtime API library is in charge of calling the remote
procedure (RPCs) as well as managing resources. OpenACC supports two styles of acceleratable code region
declaration — OpenMP-style parallel regions directly instructing compiler on how the kernels should be generated
from the original code — and more relaxed kernels regions marking specific code blocks as potentially interesting
for offloading. OpenACC directives have the facility of defining data regions allowing the programmer to share
data between distinct kernels.

Please note that while PathScale ENZO does semantic checking on the directives it does not guarantee
all errors of incorrect usage will be reported.

2.1 The OpenACC accelerated regions
OpenACC defines two kinds of regions targeted for acceleration: parallel region and kernels region.
Parallel region defines a single kernel. For the kernels region compiler analyses loop nests and extracts as many
kernels as needed.
OpenACC provides means to mark loops targeted for parallel execution by a loop directive.

OpenACC supports three levels of parallelism — gangs, workers and vectors. (See section 3.8 — Levels of
parallelism).

All code in a parallel region that is not inside a parallel loop with gang-level parallelism, will be executed
redundantly by all gangs.

There is no mechanisms for barriers inside a parallel region, but implicit syncronization is assumed on exit from it,
unless it is explictly marked as async.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 7 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

ENZO Runtime protocol supports data exchange between accelerated and hosts regions.

Regions marked as parallel or kernels must the following properties:
• Branches to and from these regions are not allowed
• Program must not depend on the order of evaulation of clauses and/or produced side-effects

These properties ensure that a codelet RPC can be remotely executed by a HWA. This RPC and its associated
data transfers can be asynchronous.

By default, all the parameters are uploaded to the HWA just before the RPC and downloaded just after its
execution has completed. Below is a C code example of a correct parallel and kernels regions defintion:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 8 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Parallel region definition

static void foo(int n, float v1[n], float v2[n], float v3[n]) {
 int i;
 #pragma acc parallel
 {
 #pragma acc loop
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
 }
} // TBD – does not really work unless code is inlined to a place where arrays are
defined (parallel_region.c)

Kernels region definition

static void foo(int n, float v1[n], float v2[n], float v3[n]) {
 int i;
 #pragma acc kernels
 {
 #pragma acc loop
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
 }
} // TBD – does not really work unless code is inlined to a place where arrays are
defined (parallel_region.c)

3 OpenMP
OpenMP provides a set of source code directives that describe how the source code should be parallelized and/or
offloaded to HWA device. Unlike OpenACC, OpenMP approach is not limited to host-device model, but also
covers multi-core parallelization tasks, although we will concentrate on host-device model in the current
document. Two main groups of OpenMP directives are parallelization/offloading directives and data management
directives.

OMP parallel directive is used to mark the start of parallel region. On a parallel region start a team of threads is
allocated for its execution. By default, code in a region is executed redundantly by all threads, but it is possible to
use worksharing constructs to distribute individual statements, loop iterations or code region sections between
different threads.

Second level of thread grouping may be achieved by using of teams directive. The teams directive creates a
league of thread teams, with master thread of each team starting to execute the corresponding region.

Simd directive may be used to parallelize loop iterations across multiple vector lanes.

It is allowed to have nested parallel regions — if a parallel directive is met inside a parallel region, then a new
thread team is created for each thread executing the outer region.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 9 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

When a thread is allocated for code execution, it is associated with implicit task. It is also possible to create
explicit tasks using task directive. Explicit task is assigned to some thread of the current team. Its actual execution
may be suspended until there is a thread available to execute it. Explicit tasks may be useful for specificitation of
asynchrounous computation trees — explicit tasks are launched asynchronously and inter-task dependencies
may be specified using depend clause of task directive.

Target directive is used to mark code region for offloading. If there is an available device capable of execution of
the region, then code is offloaded to the device and a new device thread is allocated to start its execution.

OpenMP offloading

int i;
// offload code to HWA
#pragma omp target
// Initialize parallel execution mode – allocate threads
#pragma omp parallel
{
 // distribute loop iterations across allocated threads
 #pragma omp for
 for (int i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
}

4 Remote Procedure Call and Data management
OpenACC and OpenMP allow both explicit and implicit data management.
By default, when an offloaded code region is defined, all input parameters for the region are uploaded to the HWA
just before the RPC. The output parameters are downloaded back to the host memory once the region has
sucessfully completed the execution.

User may control which arrays should be transferred back and forth upon entering and exiting the region using
copyin/copyout clauses. Furthermore, array image may be allocated on the device using OpenACC
create/OpenMP map(alloc:) clause and later — inside parallel region — manually synchronized with host using
OpenACC update/OpenMP target update clause.

Default behaviour, when data is transferred between host and device on every RPC call can cause severe
performance penalties, if a non-scalar result of kernel execution is used by a subsequent kernel. In that case we
would have to do two excessive memory transfer from device to host (output) and from host to device (input).
In order to avoid it, in OpenACC/OpenMP it is possible to define a device data region using data/target data
directive that may span along multiple offloaded regions and allocate data arrays on the device to be used by
several kernels.

In the case of a synchronous (default) or asynchronous codelet RPC, when an error occurs ENZO will call abort(),
report an error and exit.

Asynchronous data transfer or asynchronous codelet execution are hardware accelerator dependant.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 10 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

5 ENZO Memory Model
OpenACC/OpenMP support systems with shared memory between device and host and systems with distinct
memories. We will assume distinct memory model for the rest of the document.

In the current version of ENZO, the memory address managed at the host level and at the HWA level are different
(see Figure 3). The “Application” and the ENZO runtime API have their own private memory. ENZO deals with this
in a transparent way for the user. ENZO can be seen as programming glue between target-specific programming
environments and general purpose programming.

Figure 3 - ENZO memory model

6 OpenACC Directives

6.1 Introduction
The OpenACC directives may be seen as “meta-information” added in the application source code. They are safe
meta-information i.e. they do not change the original code. They address the remote execution (RPC) of code
regions as well as the transfers of data to/from the HWA memory.

The simplest use case of OpenACC directives is to mark a loop for parallel execution on the device.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 11 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Example of a simple OpenACC parallel loop declaration

 # pragma acc parallel loop
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }

The table below introduces the OpenACC directives. OpenACC directives address different needs: some of them
are dedicated to declarations and others are dedicated to the management of the execution.

Table 1- OpenACC Directives
Control flow instructions Directives for data management

Declarations • parallel
• kernels
• loop
• routine

• data
• declare

Operational Directives • atomic
• wait

• enter data
• exit data
• update
• cache

6.2 Syntax of the OpenACC directives
In order to simplify the notations, regular expressions will be used to describe the syntax of the OpenACC
directives. Below is a short summary of the main notations used.

• “?” The question mark indicates there is no preceding item or one preceding item.
• “*” The asterisk indicates there are zero or more the preceding items.
• “+” The plus sign indicates that there is one or more the preceding items.

Furthermore, to keep the notation as simple as possible, we separately present the notation used in stand-alone
codelet context of the one used with group of codelets. The main difference between the two syntaxes lies in an
additional label dedicated to the management of the groups.

We also introduced a color convention for the description of syntax directives:

• Reserved OpenACC keywords are in blue
• Elements of grammar which can be declared as OpenACC keywords are in red
• Code which is meant to be empahsized is in bold black
• Highlighted code is in magenta

The general syntax of the OpenACC directives is:

• For C and C++

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 12 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc directive_type [, directive_clauses]*

• For Fortran 95, 2003 and 2008

!$acc directive_type [, directive_clauses]*

Where:
• directive_type: is the type of the directive;
• directive_clauses: designates some parameters associated to the directive_type. These parameters may

be of different kinds and specify either some arguments given to the directive either a mode of execution
(asynchronous versus synchronous for example);

Furthermore, the clauses may accept arguments. Typically these arguments are some integer values specifying
number of parallel execution lanes, etc. or identifiers.

OpenACC directive examples:

#pragma acc parallel num_gangs(100) vector_length(8) async
#pragma acc loop reduction(*:x)
#pragma acc update host(y) wait

It is also allowed to combine parallel and kernels directives with loop directive, which has a semantics of
consecutive specification of two directives:

#pragma acc parallel loop
#pragma acc kernels loop

In the remainder of this document, most examples of directives will be given in C. Fortran directives only differ by
their prefix.

6.3 Directives for offloading code regions to HWA
6.3.1 parallel Directive

A parallel directive marks the start of core region dedicated to be run as a kernel on HWA.

The syntax of the directive is:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 13 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc parallel [async[(handle-id)]?]
 [wait[(handle-id-list)]?]
 [num_gangs(gangs-count)]
 [num_workers(workers-count)]
 [vector_length(vec-length)]
 [device_type(device-name-list)]*
 [if(condition)]
 [reduction(operator:var-list)]*
 [copy(var-list)]*
 [copyin(var-list)]*

[copyout(var-list)]*
[create(var-list)]*
[present(var-list)]*
[present_or_copy(var-list)]*
[present_or_copyin(var-list)]*
[present_or_copyout(var-list)]*
[present_or_create(var-list)]*
[deviceptr(var-list)]*
[private(var-list)]*
[firstprivate(var-list)]*
[default(none)]

Only the async, wait, num_gangs, num_workers, and vector_length clauses may follow a device_type clause.

Where:
• async clause specifies that the parallel region will be executed asynchronously with the following code.

Optional handle-id argument may be used to associate region execution with synchronous execution
queue

• wait clause forces runtime system to delay launch of region execution until all currently started operations
(or enqued to execution queues with handle-ids) finish their execution

• num_gangs specifies number of parallel gangs allocated for execution of region
• num_workers specifies number of workers for each gang
• vector_length specifies number of vector lanes in a vector
• device_type specifies device name, typically this clause is followed by a list of clauses that tune execution

mode for that device type. Commonly used device types are «nvidia», «radeon» and «xeonphi»
• if clause is used to specify condition, based on which either host- or device- version of region is executed
• copyin clause declares that value of one or more variable should be copied from host to device upon

region enter
• reduction clause specifies reduction operator and the set of variables. Reduction result is avaiable on

region exit. See section 7 of the current document for more information on this clause.
• copyout clause declares that value of one or more variable should be copied back from device to host

upon region exit
• copy clause is a composition of copyin and copyout clauses
• create clause is used to allocate memory on device, no data transfer between host and device memory is

assumed
• present clause is used to tell the implementation that corresponding data fragment is already available on

accelerator memory due to previous data transfers
• present_or_* clause group combines semantics of present and copy* clauses. If correponding data

fragment is present on accelerator memory, then no further action is required, otherwise behaviour is as
for corresponding copy clause

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 14 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

• deviceptr marks pointer variables as pointers to device memory
• private clause instructs implementation to create a private copy of each variable on the list for each of

parallel gangs allocated for region execution
• firstprivate clause behaves similar to private clause, additionaly each private variable is initialized with a

value of this variable on host
• default(none) clause prohibits implicit inference of data attributes for any variable used in region

Parallel directive may also be combined with loop directive, if the code region of interest consists of a single loop
nest.

Parallel region with device-specific tuning

static void matvec(int sn, int sm,
 float inv[sm], float inm[sn][sm], float *outv){
 int i, j;
 #pragma acc parallel loop collapse(2) \
 device_type(nvidia) num_gangs(256) num_workers(64) \
 device_type(radeon) num_gangs(128) num_workers(32)
 for (i = 0 ; i < sm ; i++) {
 for (j = 0 ; j < sn ; j++) {
 outv[i] += inv[j] * inm[i][j];
 }
 }
} // TBD arrays in header

The code sample above gives an example of parallel region with combined loop directive and device-specific
gridification tuning.

Note: device_type clause is not supported in the current release of PathScale ENZO compiler, it will supported in
future releases.

6.3.2 kernels Directive
The kernels directive allows to mark code region as potentially interesting for offloading. Compiler analyses code
region and decides on how many kernels to generate (typically — one for each top-level loop), how to gridify
threads executing loop iterations (how many parallel gangs, workers in a gang and vector lanes in a vector to
allocate). Automated offloading of kernels region does not assume that no hints or instructions to compiler can be
made inside kernels region; quite the contrary most of OpenACC constructs allowed for paralell region are also
allowed for kernels region.

The syntax of the directive is:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 15 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc kernels [async[(handle-id)]?]
 [wait[(handle-id-list)]?]
 [device_type(device-name-list)]*
 [if(condition)]
 [copy(var-list)]*
 [copyin(var-list)]*

[copyout(var-list)]*
[create(var-list)]*
[present(var-list)]*
[present_or_copy(var-list)]*
[present_or_copyin(var-list)]*
[present_or_copyout(var-list)]*
[present_or_create(var-list)]*
[deviceptr(var-list)]*
[default(none)]

Set of clauses allowed for kernels directive is a subset of clauses allowed for parallel construct and their
semantics is effectively the same.

Source code below shows example of kernel region with multiple loop nests:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 16 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Kernels region with multiple loop nests

static void matvec(int sn, int sm,
 float inv[sm], float inm[sn][sm], float *outv){
 int i, j;
 #pragma acc kernels
 {
 // distinct kernel will be most likely generated for this loop nest
 for (i = 0 ; i < sm ; i++) {
 for (j = 0; j < sn; j++) {
 inm[i][j] = - inm[j][i];
 }
 }
 // distinct kernel will be most likely generated for this loop nest
 for (i = 0 ; i < sm ; i++) {
 for (j = 0 ; j < sn ; j++) {
 outv[i] += inv[j] * inm[i][j];
 }
 }
 }
} // TBD: re-check

6.4 Data Allocation and Transfer
6.4.1 data Directive

Data directive defines a static lifetime region for variables allocated in HWA memory. It can be used to allocate
memory objects in the device memory used by several kernels. Data directive clauses may be used to instruct
implementation on how the actual data should be transferred between host and device memory.

The syntax is:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 17 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc data
 [if(condition)]
 [copy(var-list)]*
 [copyin(var-list)]*
 [copyout(var-list)]*
 [create(var-list)]*
 [present(var-list)]*
 [present_or_copy(var-list)]*
 [present_or_copyin(var-list)]*
 [present_or_copyout(var-list)]*
 [present_or_create(var-list)]*
 [deviceptr(var-list)]*

Semanicst of all of the data directive clauses are described in parallel region section of the current document.

Below is the example of static data region usage. Lifetime of arrays A and B on the device spans along the whole
data block. Array A is copied to the device memory from host memory upon region enter and used by two kernels.
Array B is copied from device memory to host memory upon region exit.

#pragma acc data copyin(A) copyout(B)
{

#pragma acc parallel loop
 for (int i = 0; i < n; i++) {
 A[i] = A[i] * i + C[i]; // copyin property derived for C array automatically
 }
 #pragma acc parallel loop
 for (int i = 0; i < n; i++) {
 B[i] = A[i] - i;
 }
}

6.4.2 enter data / exit data directives
enter data and exit data clauses may be used to create dynamic data lifetime regions.

enter data clause is used to allocate data blocks in device memory (and copy actual data from host, if required).

It has the following syntax:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 18 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc enter data
 [if(condition)]
 [async[(handle-id)]?]
 [wait[(handle-id-list)]?]
 [copyin(var-list)]*
 [create(var-list)]*
 [present_or_copyin(var-list)]*
 [present_or_create(var-list)]*
 [deviceptr(var-list)]*

Exit data clause can be used to deallocate data and (optionally) to move data from device memory to host.

It has the following syntax:

#pragma acc exit data
 [if(condition)]
 [async[(handle-id)]?]
 [wait[(handle-id-list)]?]
 [copyout(var-list)]*
 [delete(var-list)]*

Please note new delete clause that should be used for deallocation of data in device memory.

Example below sketches possible scenario for enter data and exit data directvies usage. Application allocates
array in device memory before starting compute portion of code, this array is then used by multiple kernels during
code exeuction and deallocated when it is not needed anymore.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 19 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#define N 1024
int A[N];

void app_init() {
#pragma acc enter data create(A)

}

void app_shutdown() {
#pragma acc exit data delete(A)

}

...

void func() {
#pragma acc parallel loop

 for (int i = 0; i < N; i++)
A[i] = A[i] * 2;

}

void main() {
 app_init();
 func();
 ...
 app_shutdown();

} // TBD: dynamic_data_lifetime.c

6.4.3 declare directive
Declare directive creates static data lifetime region very much the same as data directive, but the rules for region
bounds inference are different. If declare directive is met in a function scope or subroutine scope, data lifetime
region spans along corresponding function or subroutine. If declare directive is met in a global scope, then data
lifetime region is from program execution start to program execution end.

Declare directive has the following syntax:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 20 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc declare
 [copy(var-list)]*
 [copyin(var-list)]*
 [copyout(var-list)]*
 [create(var-list)]*
 [present(var-list)]*
 [present_or_copy(var-list)]*
 [present_or_copyin(var-list)]*
 [present_or_copyout(var-list)]*
 [present_or_create(var-list)]*
 [deviceptr(var-list)]*
 [device_resident(var-list)]*
 [link(var-list)]*

device_resident clause may be used to specify that named variables on the list should be allocated in device
memory only

6.4.4 update directive
When using a HWA, an important bottleneck is often the data transfer between the HWA memory and the host
memory. To limit the communication overhead, the programmer can try to overlap data transfers with
computations by using the asynchronous property of the HWA.
Update directive is used to transfer partial or complete values of variables between host and device memory.

It has the following syntax:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 21 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc update [if(condition)]
 [async[(handle-id)]?]
 [wait[(handle-id-list)]?]
 [self(var-list)]*
 [host(var-list)]*
 [device(var-list)]*
 [device_type(device-name-list)]*

Where:
• device clause specifies that values of device version of variables on the list should be updated to

correspond to host values
• self clause is a synonym for device clause
• host clause specifies that values of host versions of variables on the list should be updated to correspond

to device values

6.4.5 Subarrays in OpenACC
A subarray is a selected portion of an array. It designates a set of elements from an array.

The subarrays can be used in order to optimize data transfers between the host and the HWA in some cases
where it is not necessary to transfer the whole array.

Subarrays may serve as an argument for most of data-related clauses.

Syntax of subarray specification is different for C/C++ and Fortran languages.

In C/C++ it takes the following form:

array_name([start-index?:length?])+

Where start-index is a start index of array subscript and length is a length of array subscript along corresponding
dimension.

If start-index is skipped, it is assumed to be 0. If length is skipped, then array size along corresponding dimension
must be deducible from array declaration.

In Fortran it takes the following form:

array_name(low-bound?:high-bound])+

Array subscript usage example:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 22 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

int A[10][20][20];

int func() {
 int x;
 #pragma acc parallel loop copyin(A[0:1][0:20][0:20]) reduction(+:x) collapse(2)
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 20; j++) {
 x = A[0][i][j] * A[1][i][j];
 }
 }
 return x;
} // TODO: does not work because of collapse

Important subarray restriction is that it should occupy contiguous chunk of memory with the exception of
dynamically-allocated array dimenstion is C:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 23 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

void func() {
 int A[10][20][20];
 int x;
 // inorrect – copied data is not contiguous!!!
 #pragma acc parallel loop copyin(A[0:1][0:10][0:10]) reduction(+:x) collapse(2)
 for (int i = 0; i < 10; i++) {
 for (int j = 0; j < 10; j++) {
 x = A[0][i][j] * A[1][i][j];
 }
 }
}

6.5 Loop directive
OpenACC directive applies to a loop immediately following (or a loop nest) it and instructs compiler how to
parallelize it.

One can use gang, worker and vector clauses to describe how loop (or loop nest) iteration should be mapped to
different levels of parallelism.

The syntax of loop directive is as follows:

#pragma acc loop
 [collapse(num)]
 [gang(gang-arg-list)]
 [worker(num)]
 [vector(num)]
 [seq]
 [auto]
 [tile(tile-spec)]
 [device_type(device-name-list)]
 [independent]
 [private(var-list)]
 [reduction(operator:var-list)]*

Private clause specifies that a private copy of each specified variable should be created for each thread that
executes loop iteration.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 24 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc parallel loop
for (i=0; i < n; i++) {
 int tmp = i * 10;
 #pragma acc loop private(tmp)
 for (j=0; j < n; j++) {
 tmp = tmp * a[i][j]; // private copy of tmp variable is created
 b[i][j] += tmp;
 }
} // TBD: strange warning (private.c)

Most of the specified loop clauses are used to tune loop implementation performance and are described in section
11. of current document.

6.6 Asynchronous execution
The main intent of asynchronous execution model in OpenACC is support for overlapping of computation and
data transfers, but also for overlapping of host and device code.

Async clause may be specified for parallel and kernels regions, enter data, exit data and update directives.

If a handle-id is specified as async clause argument then corresponding kernel execution or data transfer is
associated with a stream of actions. All actions within a stream are executed sequentially in a FIFO manner, but
may overlap with actions from other streams.

Explicit synchronization with asynchronously lanuched action may be achieved by means of wait clause (applied
to all directives mentioned above) or wait directive.

Wait clause without specific handle-id forces current thread to wait for completion of all actions asynchronously
launched by this thread, whereas wait clause with a list of handle-ids waits only for completion of all currently
scheduled actions in corresponding streams.

Wait directive has the following syntax

#pragma acc wait [,async(handle-ids)]

Its semantics is close to the semantic of wait clause; please refer to OpenACC 2.0 specification for the exact
semantics.

The example below illustrates use of overlapping of data transfers and computations. We divide input arrays on a
number of chunks and associate asynchronous stream with each chunk. Suppose that HWA device cannot
execute more than one kernel at a time, then we will effectively overlap computation for chunk i with output data
transfer for chunk i - 1 and input data transfer for chunk i + 1.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 25 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

async clause usage

 void func(int *A, int *B, int size) {

 # pragma acc data create(A[0:size], B[0:size])
 for (int i = 0; i < size / CHUNKSIZE; i++) {
 # pragma acc update device(B[CHUNKSIZE * i:CHUNKSIZE]) async(i)
 # pragma acc update device(A[CHUNKSIZE * i:CHUNKSIZE]) async(i)
 # pragma acc parallel loop async(i)
 for (int j = CHUNKSIZE * i ; j < CHUNKSIZE * (i + 1); j++) {
 A[j] = B[j] + A[j];
 }
 # pragma acc update host (A[CHUNKSIZE * i:CHUNKSIZE]) async(i)
 }
 } ++

OpenACC async/wait clauses may be also used for construction of tree-like dependencies between tasks.

6.7 Procedure calls
Procedure may be marked for execution on the HWA using routine directive — in that case both host and device
versions of code are generated.

When routine directive is used in a file containing procedure call, it is used by implementation in order to
determine procedure call attributes.

Intended level of parallelism should be specified for routine, which can be one of: gang, worker, vector or
sequential.

Calls to procedure from a parallelization context of the same or lower level are prohibited, i.e. call to gang-parallel
routine may not be made from a loop explicitly marked as gang-paralell:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 26 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Invalid routine call

 #pragma acc routine gang
 void func(int *A, int *B, int size) {
 #pragma acc loop
 for (int j = 0; j < size; j++) {
 A[j] = B[j] + A[j] * 2;
 }
 }
 void caller(int **A, int **B, int size) {
 #pragma acc parallel loop gang
 for (int i = 0; i < size; i++) {
 func(A[i], B[i], size);
 }
 }

The example above may be fixed by changing routine parallelization level from gang to worker, vector or seq.

Valid routine call example

 #pragma acc routine seq
 int scmul(int A[2], int B[2]) {
 int result = 0;
 for (int i = 0; i < size; i++) { // each device thread executes the whole loop
 result += A[i] * B[i];
 }
 return result;
 }

 void caller(int ***A, int ***B, int **C, int size) {
 #pragma acc parallel loop gang
 for (int i = 0; i < size; i++) {
 #pragma acc parallel loop vector
 for (int j = 0; j < size; j++) {
 C[i][j] = scmul(A[i][j], B[i][j]);
 }
 }
 }

Note: device routines are not supported in the current release of PathScale ENZO solution, it will supported in
future releases.

6.8 Nested parallelism
OpenACC specification allows nested accelerated regions (kernels or parallel). This syntax construct represents
ability of some HWA devices to dynamically generate and launch kernels.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 27 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Nested parallelism is not fully supported in the current release of PathScale ENZO solution, but partial support
exists.

6.9 Atomic operations
OpenACC supports atomic access to variables via atomic directive.

It may be applied either to a single statement or a pair of statements of special kind.

Atomic directive have the following syntax:

#pragma acc atomic [atomic-clause]

Where atomic-clause is one of the following list: read, write, update, capture.

Below is the example of atomic directive use:

 #pragma acc parallel loop
 for (int i = 0; i < n; i++)
 #pragma acc atomic update
 a++;
 }

Please refer to OpenACC specification for the complete list of restrictions for atomic statement blocks and exact
semantics of clauses.

Note: atomic operations are not supported in the current release of PathScale ENZO solution, it will supported in
future releases.

7 OpenMP directives

7.1 Introduction
The OpenMP directives may be seen as “meta-information” added in the application source code. They are safe
meta-information i.e. they do not change the original code. They address parallelization of code regions,
offloading code regions to accelerator devices and transfers of data to/from the HWA memory. We will be
concentrated on host-device OpenMP model in this document.

Below is the simple example of vector multiplication offloaded to HWA:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 28 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

 #pragma omp target map(to: v1, v2) map(from: v3)
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {

v3[i] = v1[i] * v2[i]
 }

First OpenMP directive marks code for offloading and defines copy-in/copy-out properties for arrays.
Arrays v1 and v2 will be copied from host memory to device memory upon region start and array v3 will be copied
from device to host upon region finish.

Second OpenMP directive is a composition of parallel and for directives. Parallel directive creates a team of
device threads and starts parallel execution of code region and for directive instructs OpenMP runtime to
distribute loop iterations between device threads.

7.2 Syntax of OpenMP directives
The general syntax of the OpenMP directives is:

• For C and C++

#pragma omp directive_type [, directive_clauses]*

• For Fortran 95, 2003 and 2008

!$omp directive_type [, directive_clauses]*

Where:
• directive_type: is the type of the directive;
• directive_clauses: designates some parameters associated to the directive_type. These parameters may

be of different kinds and specify either some arguments given to the directive either a mode of execution
(asynchronous versus synchronous for example);

Furthermore, the clauses may accept arguments. Typically these arguments are some integer values specifying
number of parallel execution lanes, etc. or identifiers.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 29 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

OpenMP directive examples:

#pragma omp parallel
#pragma omp for reduction(*:x)
#pragma omp target update to(y[0:10])

It is also possible to create certain combinations of OpenMP directives as a shortcut for specifying them
separately:

#pragma omp parallel for simd

Please refer to OpenMP specification for the complete list of allowed directive combinations.

In the remainder of this document, most examples of directives will be given in C. Fortran directives only differ by
their prefix.

7.3 Parallel directive
Parallel directive starts parallel execution of a code region. Team of threads is created for its execution, with
current thread becoming a master for the team.

The syntax of parallel directive is as follows:

#pragma omp parallel [if(condition)]
 [num_threads(threads-count)]
 [proc_bind(master | close | thread)]
 [reduction(operator:var-list)]*
 [copyin(var-list)]*

[private(var-list)]*
[firstprivate(var-list)]*
[shared(var-list)]*
[default(shared | none)]

Where:
• num_threads specifies number of threads allocated for execution of region
• if clause specifies condition based on which runtime either starts parallel execution of the region or

fallbacks to serial execution.
• procbind clause controls OpenMP thread affinity policy
• private clause instructs implementation to create a private copy of each variable on the list for each of

threads allocated for region execution
• firstprivate clause behaves similar to private clause, additionaly each private variable is initialized with a

value of the original variable
• copyin clause semantics is similar to firstprivate, although it can be used if variable was already defined

as threadprivate

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 30 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

• shared clause declares one or more variable to be shared between team threads
• default() clause defines default data-sharing attributes of variables used in the region

default(none) prohibits implicit inference of data attributes for any variable used in region
default(shared) sets shared data attribute for variable referenced inside region

• reduction clause specifies reduction operator and the set of variables. Reduction result is avaiable on
region exit.

 #pragma omp parallel num_threads(4)
 {
 // each thread executes parallel region statements

printf("Hello from thread %d\n", omp_get_thread_num());
 }

7.4 Worksharing constructs
Worksharing constructs may be used to explicitly distribute work items (such as indvidual statements or loop
iterations) inside parallel region across team threads. By default, implicit barrier exists in the end of workshare
region, but it is possible to cancel it using nowait clause.

7.4.1 Loop construct
Loop construct can be used to distribute loop (or loop nest) iterations across team threads.

Unlike OpenACC, there is a explicit barrier in the end of loop construct, unless nowait clause is specified.

The syntax of loop construct is as follows:

#pragma omp for [private(var-list)]*
[firstprivate(var-list)]*
[lastprivate(var-list)]*

 [reduction(operator:var-list)]*
 [schedule(kind:chunk-size)]
 [collapse(num)]
 [ordered]

[nowait]

Where:
• private clause instructs implementation to create a private copy of each variable on the list for each of

threads allocated for region execution
• firstprivate clause behaves similar to private clause, additionaly each private variable is initialized with a

value of the original variable
• lastprivate clause behaves similar to private clause, additionaly each original variable is updated to have

a value of private variable corresonding ot last loop iteration upon loop exit
• reduction clause specifies reduction operator and the set of variables. Reduction result is avaiable on

region exit.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 31 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

• schedule clause specifies how loop iterations should be divided into chunks, which are distributed
between threads. Schedule kind may be one of: static, dynamic, guided and auto

• collapse may be used to associate more than one loop nest with an OpenMP loop construct
• ordered clause may be used to force in-order execution of loop iterations
• nowait clause may be used to cancel implicit barrier in the end of loop construct

Source code loop to which the loop directive is applied should be of canonical form. In case of C/C++ it means
that it should be for loop with index variable initializer, termination condition and increment statement of simple
kinds. Please refer to OpenMP specification for the exact definition of canonical loop.

#pragma omp parallel for
for (int i = 0; i < n; i++) { // canonical OpenMP loop
 ..
}

#pragma omp parallel for
for (i = 0, j = 0; i + j < n; i++, j += i) { // non-canonical OpenMP loop
 ..
}

7.4.2 Sections construct
Sections directive is used to mark a structured block with several structural section sub-blocks.

Its syntax is as follows:

#pragma omp sections [private(var-list)]*
[firstprivate(var-list)]*
[lastprivate(var-list)]*

 [reduction(operator:var-list)]*
 nowait

Individual sections are distributed between threads and may be executed in parallel, if implementation decides to
do that.

Below is the example of sections construct usage:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 32 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

int i;

#pragma omp parallel sections private(i)
{ // individual sections may be executed concurrently

#pragma omp section
 {
 for (i = 0; i < n ; i++) {
 c[i] = a[i] - b[i];
 }
 }

#pragma omp section
 {
 for (i = 0; i < n ; i++) {
 d[i] = a[i] + b[i];
 }
 }
}

7.4.3 Single construct
Single directive marks a code region that must be executed by only a single thread of the current thread team.

Below is the example of single construct usage:

#pragma omp parallel
{
 foo(); // called by all threads

 #pragma omp single
 printf(“Foo stage completed”);
 // implicit barrier at that point

 bar(); // called by all threads
}

7.4.4 Workshare construct
Workshare construct allows distribution of units of work such as scalar assignments, array assignments, etc.
across team threads. This construct is Fortran-specific and not covered in the current document. Please refer to
OpenMP specification for details.

7.5 Device constructs
Current section covers OpenMP constructs related to HWA offloading, but not related to HWA data management
and transfers.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 33 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

7.5.1 Target directive
Target directive offloads region to HWA:

#pragma omp target [device(num)]
 [map(map-type:var-list)]*
 [if(condition)]

Where:
• device specifies id of device targeted for region execution
• map clause controls data transfers between host and device memory
• if clause is used to specify condition, based on which either host- or device- version of region is executed

Example below shows code region targeted for HWA offloading. Mapping attributes are explictily specified for the
region: v1 and v2 are copied-in upon region start and v3 is copied-out upon region end. Region is offloaded to
HWA only if number of loop iterations is larget than threshold 100.
Note that, unlike OpenACC, implicit barrier is inserted in the end of parallel loops, so the code below is correct.

 #pragma omp target map(to: v1[:n], v2[:n]) map(from: v3[:n]) if (n > 100)
 {
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 v1[i] = v1[i] * v2[i]
 } // implicit barrier
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 v3[i] = v1[i] + v2[i]
 }
 }

7.5.2 Teams directive
Teams directive introduces second level of thread grouping — team leagues. Master thread of each team
executes the region:

#pragma omp teams [num_teams(num)]
[thread_limit(num)]
[reduction(operator:var-list)]*
[private(var-list)]*
[firstprivate(var-list)]*
[shared(var-list)]*
[default(shared | none)]

Where:
• num_teams specifies number of teams in a league
• thread_limit — maximal number of threads that runtime may allocate for a team

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 34 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

• private clause instructs implementation to create a private copy of each variable on the list for each of
teams allocated for region execution

• firstprivate clause behaves similar to private clause, additionaly each private variable is initialized with a
value of the original variable

• reduction clause specifies reduction operator and the set of variables. Reduction result is avaiable on
region exit.

• shared clause declares one or more variable to be shared between teams
• default() clause defines default data-sharing attributes of variables used in the region

7.5.3 Distribute directive
Distribute directive is used to distribute loop iterations between thread teams within a league:

#pragma omp distribute [collapse(num)]
[private(var-list)]*
[firstprivate(var-list)]*
[dist_schedule(static, [chunk-size])]

Where:
• collapse(n) clause specifies that distribute directive to a loop nest of n loops
• private clause declares variable on the list to be private for each thread team
• firstprivate clause inherits semantics of private clause and also initializes private variables with the value

of original variable
• dist_schedule defines distribution of consecutive iteration chunks across thread teams.

Only the static distribution is allowed in current version of OMP standard.

7.6 Data allocation and transfers
7.6.1 Target data directive

Target data directive creates host data environment, allocates variables in host memory and defines host-device
data transfer policies.

Its syntax is as follows:

#pragma omp target data [device(num)]
 [map(map-type:var-list)]*
 [if(condition)]

It has the same the set of clauses as target directive, with same semantics. It is useful to create data regions that
span across multiple target regions, to avoid excessive device-host-device data transfers.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 35 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp target data map(to:A[:n])
{

#pragma omp target map(to:B[:n])
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 A[i] = A[i] * i + B[i];
 }
 // A is resident in device memory
 #pragma omp target map(from:C[:n])
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 C[i] = A[i] - i;
 }
}

7.6.2 Target update directive
Target data directive may be used to synchronize values of device and host versions of variable.

Its syntax is as follows:

#pragma omp target update [device(num)]
 [to(var-list)]*
 [from(var-list)]*
 [if(condition)]

Where:
• device specifies id of device targeted for region execution
• to clause specifies a list of variables that should be transferred from host to device
• from clause specifies a list of variables that should be transferred from deivce to host
• if clause is used to specify condition, based on which either host- or device- version of region is executed

Example below shows how target update may be used to update existing device image of host array fragment:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 36 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp target data map(to:A[:n]) map(to:C[:n])
{
 // First target section

#pragma omp target
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 A[i] = A[i] * i + C[i];
 }
 // Update host version of C
 update_array_range_with_new_values(C, 0, n / 2);
 // Update low half of device version of C

#pragma omp target update to(C[:n/2])
 // Second target section
 #pragma omp target map(from:B[:n])
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 B[i] = A[i] - C[i];
 }
}

7.6.3 Declare target directive
Declare target directive may be used to create device variables directly in device memory and declare functions
as callable on device.

ts syntax is as follows:

#pragma omp declare target
 …
 < variable and function declarations >
 …
#pragma omp end declare target

Example below shows how declare target directive can be used:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 37 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp declare target
int norm(int x[2]) { // Function defined and called on device
 return x[0] * x[0] + x[1] * x[1];
}
#pragma omp end declare target

...
{
 #pragma omp target
 #pragma omp parallel for
 for (int i = 0; i < n; i++) {
 nrm[i] = norm(x[i]);
 }
}

7.6.4 Threadprivate directive
Threadprivate directive is used to declare variables as private for each OMP thread.

Its syntax is as follows:

#pragma omp threadprivate(var-list)

7.6.5 OpenMP array subscripts
OpenMP data allocation and transfer directives allow references to array fragments.
Fortran source language has embedded array subscripting. Most common generic C/C++ OpenMP single
dimension array subscript has a form of
 [lower-bound : length]
Length may be omitted if array size is known. If lower-bound is omitted, its value is implied to be zero.
For multi-dimensional C/C++ its only allowed to specify subscript for the first dimension.

Example below shows an example of array subscript usage. By using subscript we copy only low halves of arrays
to device, instead of copying full arrays.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 38 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

int A[20];
int B[20];

int func() {
 int x;
 #pragma omp target map(to:A[5:3]) map(to:B[5:3])
 #pragma omp parallel for reduction(+:x)
 for (int i = 5; i < 8; i++) {

x += A[i] * B[i];
 }
 return x;
}

7.7 Tasking constructs
7.7.1 task construct

When an OpenMP thread is allocated for parallel region execution, implicit task is associated with it.
When an application logic requires creation of asyncrhonous computations and specifying dependencies between
them, it is useful to employ OpenMP explicit tasks.

The syntax of task directive is as follows:

#pragma omp task [if(cond)]
[final(cond)]
[untied]
[default(shared | none)]
[mergeable]
[private(var-list)]*
[firstprivate(var-list)]*
[shared(var-list)]*
[depend([in | out | inout], var-list)]*

Where:
• if clause specifies condition based on which either a new asynchronous task will be lauched, or current

thread will synchronously execute code in the task region.
• final clause specifies condition for making the task final. Final task lauches all sub-tasks synchronously.
• untied clause marks the task is untied — which means that task may be resumed by a thread different

from the initial one
• default clause sets default data sharing attribute for task region variables
• private, shared, firstprivate clauses set different data sharing attributes
• mergeable clause denotes that a task if it is to be executed synchronously by runtime may be merged in

the enclosing task context — i.e. data enviroment may be inherited instead of creating a new one
• depend clause defines input and output dependencies for task, associated with source code variables

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 39 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

In the example below we launch three tasks asynchronously. First two tasks use HWA device to compute value of
a and b. Third task will only be lauched when both a and b compuation is finished.

 #pragma omp task depend(out: a)
 {

 #pragma omp target
 #pragma omp parallel for reduction(+:a)
 for (int i = 0 ; i < n; i++) {
 a += somefunc1(i);
 }
 }

 #pragma omp task depend(out: b)
 {

 #pragma omp target
 #pragma omp parallel for reduction(+:b)
 for (int i = 0 ; i < n; i++) {
 b += somefunc2(i);
 }
 }

 #pragma omp task depend(in: a, b)
 {
 c = a + b;
 printf("Asynchronous computation finished with result: %d\n");
 }
// TBD: fails when "omp target" removed

7.7.2 taskyield directive
Taskyield directive specifies that current task may be suspended, and other task assigned to the current thread
instead.

#pragma omp taskyield

7.7.3 taskwait directive
Taskwait directive specifies that current task should be suspended until all sub-tasks execution is completed.

#pragma omp taskwait

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 40 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

for (int i = 0; i < n; i++) {
 #pragma omp task
 somefunc(i);
}

// wait for all somefunc() calls to complete
#pragma omp taskwait

7.7.4 taskgroup directive
Taskwait directive specifies that current task should be suspended until all execution of all sub-tasks and their
descendant tasks is completed.

#pragma omp taskgroup

7.8 Synchronization
7.8.1 master construct

Master directive is applied to a structued block, that must be executed only by master thread of the current team.
No barrier on the beginning or in the end of the block is assumed.

Syntax of this directive is as follows:

#pragma omp master

Master construct may be used for asynchronous jobs, such as logging:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 41 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

 #pragma omp parallel
 {
 #pragma omp for
 for (int i = 0; i < n; i++) {
 #pragma omp for
 for (int j = 0; j < m; j++) {

 C[i][j] = A[i][j] * B[i][j];
 }
 #pragma omp master
 logger.log("Iteration %d finished", i);
 }
 }

7.8.2 flush construct
OpenMP flush directive is used to flush all cached version of shared variables for a current thread to shared
memory. It also invalidates all variable images privately cached by the thread.

#pragma omp flush(var-list)

7.8.3 critical construct
Critical directive applied to a structural block creates critical section. Exclusive access is guaranteed within thread
contention group, which is defined as a group of threads allocated for current parallel region execution.

#pragma omp critical [name]?

Optional name may be specified for the critical construct. Semantics of name assigment assumes that no two
critical sections with same name may be executed concurrently.

7.8.4 barrier construct
Barrier directive may be used to enforce synchronization for threads within a team.

#pragma omp barrier

All threads must execute barrier before any of them may continue execution beyond barrier. Barrier directive
semantics assumes implicit flush.

Below is the example of barrier usage:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 42 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp parallel shared(A, B) private(id, i) num_threads(N)
{
 id = omp_get_thread_num();
 A[id] = somefunc(id);
 // wait for A computation to finish
 #pragma omp barrier
 #pragma omp for
 for (i = 0; i < N; i++) {
 B[i] = somefunc2(i, A);
 }
}

7.8.5 atomic construct
Atomic construct allows to express atomic reads, writes and updates of shared variable values.

Atomic directive syntax is as follows:

#pragma omp atomic [read | write | update | capture] [seq_cst]?

It may be followed by expression of certain kind or structured block (in case when capture clause is specified).

Please refer to OpenMP documentation for the details fo atomic directive semantics and usage.

7.8.6 ordered construct
Ordered construct may be used to specify that a structured block inside a region must be executed in-order by
concurrently executing loop iterations, as if the whole loop was not parallelized.

#pragma omp ordered

It is only allowed to have a single ordered block within a parallel loop.

7.9 SIMD
7.9.1 simd directive

Simd directive is used to specify that loop iterations may be executed concurrently by means of SIMD instruction
of target processor.

Its syntax is as follows:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 43 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp simd [safelen(num)]
 [linear(var-list[:num])]*
 [aligned(var-list[:num])]*
 [private(var-list)]*
 [lastprivate(var-list)]*
 [reduction(operator:var-list)]*
 [collapse(num)]

Where:
• safelen clause specifies maximal distance between loop iterations that may be safely executed in parallel
• linear clause creates private variables with value for each iteration i being value of original variable plus i

times num.
• aligned clause is used to specify array alignment
• private clause declares variable on the list to be private for each simd lane
• firstprivate clause inherits semantics of private clause and also initializes private variables with the value

of original variable
• reduction clause specifies reduction operator and variables on which reduction must be performed.
• collapse(n) clause specifies that simd directive applies to a loop nest of n loops

Below is the example of simd directive usage:

 #pragma omp target
 #pragma omp parallel
 // distribute loop iterations between simd lanes of single
 // device thread
 #pragma omp simd safelen(4)
 for (int i = 4; i < n; i++) {

v3[i] = v1[i] * v2[i] + v3[i - 4];
 }

Note: safelen clause is not supported in the current release of PathScale ENZO solution, it will supported in future
releases.

7.9.2 declare simd directive
Declare simd directive is used to declare functions and procedures as callable from device simd execution
context.

Its syntax is as follows:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 44 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp declare simd [simdlen(num)]
 [linear(arg-list[:num])]*
 [aligned(arg-list[:num])]*
 [uniform(arg-list)]*
 [inbranch]
 [notinbranch]

Where:
• simdlen clause specifies simd vector length for the function
• linear clause creates private variables with value for each iteration i being value of original argument plus

i times num.
• aligned clause is used to specify array alignment
• uniform clause specifies that values of arguments on the list are invariant for all simd lanes of enclosing

call context
• firstprivate clause inherits semantics of private clause and also initializes private variables with the value

of original variable
• inbranch clause specifies that function will always be called from a conditional statement inside simd loop
• notinbranch clause specifies that function will never be called from a conditional statement inside simd

loop

7.10 Cancellation
Cancel directive may be used to abort execution of parallel region or group of tasks.

Its syntax is as follows:

#pragma omp simd [parallel | sections | for | taskgroup] [if(cond)]?

First clause defines cancellation scope and the optional second clause — condition for cancellation to be fired.

Threads and tasks execution is not immediately aborted when cancel directive is encountered. There are several
cancellation points — implicit and explicit barriers and cancel directives — at which cancellation of the parallel
region or task group is being checked. It is also possible to define custom cancellation points using cancellation
point directive:

#pragma omp cancellation point

Bellow is the example of cancel directive usage:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 45 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma omp parallel
{
 try {
 do_something_dangerous();
 }
 catch(...) {
 #pragma omp cancel parallel
 }

 // if exception occured, no thread
 // will start execution of the loop below
 #pragma omp for
 for (int i = 0; i < n; i++) {
 do_something_safe(i);
 }
} // TBD: aborts

8 Supported Languages
Following language limitations are listed in OpenACC documentation:

• A program may not branch into or out of an OpenACC parallel construct.
• In C and C++, function static variables are not supported in functions to which a routine directive applies.
• In Fortran, variables with the save attribute, either explicitly or implicitly, are not supported in subprograms

to which a routine directive applies.

9 Compiling OpenACC and OpenMP Applications
PathScale ENZO provides developers with OpenACC/OpenMP standards compliant compilers in order to easily
build ENZO applications. PathScale ENZO currently comes with OpenACC/OpenMP Fortran, C and C++
compilers.

9.1 Overview
In terms of use, PathScale ENZO works the same as the EKOPath compilers. However, the paths diverge at the
final code generation phase.

Compiling an ENZO program is as simple as using the traditional EKOPath pathf90, pathcc or pathCC compiler
drivers.

OpenACC support is enabled by -acc command line option. OpenMP support is enabled by -mp command line
option.
Below are compiler invocation examples:

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 46 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

// compile C code with OpenACC support using NVidia Kepler as accelerator device
pathcc -acc -device=kepler test.c

// compile C++ code with OpenACC support using NVidia Kepler as accelerator device
pathCC -acc -device=kepler test.cpp

// compile Fortran code with OpenACC support using NVidia Kepler as accelerator device
pathf95 -acc -device=kepler test.f

// compile C code with OpenMP support using NVidia Kepler as accelerator device
pathcc -mp -device=kepler test.c

// compile C++ code with OpenMP support using NVidia Kepler as accelerator device
pathCC -mp -device=kepler test.cpp

// compile Fortran code with OpenMP support using NVidia Kepler as accelerator device
pathf95 -mp -device=kepler test.f

Please reference the ENZO_cli_guide for the full list of supported targets.

9.2 Common Command Line Parameters
We strive to make the ENZO compiler as easy to use as possible, but for more details on compiler options please
reference ENZO_cli_guide.pdf

10 Running OpenACC and OpenMP Applications
The execution of ENZO applications using the ENZO runtime library works just as regular applications.

10.1 Launching the Application
OpenACC and OpenMP programs using the ENZO runtime are launched just like regular programs

$./program

11 Improved code generation and performance

Most of the transformations described in this part apply on loops. A loop is a syntactic language construction
expressing the repetition of some statements.

“for” loops in C language and “DO” loops in Fortran are supported.

To optimize the code generated by ENZO, two main types of directives are used:

• Some specifying loop properties;

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 47 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

• Others mentioning transformations to be applied on the loops.

Please note that ENZO does not check for all incorrect usages of the directives. Be aware that misuse of
the OpenACC/OpenMP directives may lead to erroneous results.

11.1 Loops performance optimizations
The clauses and directives described in this part allow to specify some properties of loops and desired
transformations that should be applied by compiler. These properties are then used by the code generator in order
to optimize the generated code.

11.1.1 OpenACC kernels region
Unlike OpenMP/OpenACC parallel region, OpenACC kernels region serves not as a directive for compiler to
parallelize certain code section, but as a hint that certain code section should be considered by the compiler for
parallelization/offloading. In this section we consider two loop clauses, that may help to tune kernels region
performance.

11.1.1.1 OpenACC independent clause

This clause has to be used when the code generator is not able to tell that loop iteration are data-independent.

It is typically used only in context of kernels region, since all explicitly marked loops in parallel region are implied
to have data-independent iterations.

 A parallel loop is declared using the following directive:

#pragma acc kernels loop independent
for (i = 0; i < n; i++)

X[i] = Y[i] + Z[i];

11.1.1.2 OpenACC seq clause

A non-parallel loop (i.e. sequential) is declared using the following directive:

#pragma acc loop seq

The following example shows a loop nest where the use of the OpenACC directives allows guiding the code
generation.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 48 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

explicit sequential clause usage

#pragma acc kernels loop seq
for (i=0; i < n; i++) { // execute iteration of this loop redundantly by all threads
#pragma acc loop independent
 for (j=0; j < n; j++) {
 D[i][j] = A[i][j] * E[3][j];
 }
}

This directive proves to be useful to control the gridification process of loops.

Note that this directive forces ENZO to consider the loop as sequential independently of any optimization
analysis.

11.1.2 reduction
The reduction clause allows the user to indicate that one or several reductions are done in the loop or parallel
region. Indeed, without this clause, the parallel execution of a loop with such an operation could lead to a wrong
result.

The reduction clause has the following syntax:

reduction(operator:vars)

• operator: specifies a reduction operator (see Table 9)
• vars: names of a scalar variables referenced in the loop;

The table below summarize the list of allowed builtin reduction operators in the reduction clause for OpenACC
and OpenMP.

Table 9 - List of reduction operators defined in OpenACC

C/C++
Operator

Fortran
Operator

Initial
value

Meaning

+ + 0 Addition

* * 1 Multiplication

- - 0 Substraction
(OpenMP only)

min min least Minimum

max max largest Maximum

&& .and. 1 Logical and

|| .or. 0 Logical or

^ ieor 0 bitwise
exclusive or

| ior 0 bitwise

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 49 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

inclusive or

& iand ~0 bitwise and

.eqv. .true. eqvuivalence

.neqv. .false. not-
eqvuivalence

OpenACC reduction clause may be applied to parallel, kernels and loop directives.

OpenMP reduction clause may be applied to parallel, loop, sections, simd, teams directives.

OpenMP allows definition of custom reduction operators:

#pragma omp declare reduction(operator:typename-list:combiner) [initializer(expr)]

Below is the example of custom merge reduction operator declaration, that may be used to merge lists of integer
numbers. omp_out and omp_in are special symbols, denoting variable used to cumulate reduction result and
individual value used in cumulation.

#pragma omp declare reduction(merge:
 std::list<int>:
 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()
)

OpenACC/OpenMP loop reduction

#pragma acc parallel
#pragma acc loop reduction(+:ssx,ssy)
 for (i = 0; i < NK; i++)
 {
 if (qqprim2[i])
 {
 qq[qqprim[i]] += 1.0;
 ssx = ssx + qqprim3[i];
 ssy = ssy + qqprim4[i];
 }
 }

#pragma omp parallel
#pragma omp for reduction(+:ssx,ssy)
 for (i = 0; i < NK; i++)
 {
 if (qqprim2[i])
 {
 qq[qqprim[i]] += 1.0;
 ssx = ssx + qqprim3[i];
 ssy = ssy + qqprim4[i];
 }
 }

Code fragment above illustrates the use of the OpenACC/OpenMP parallel directive with two addition (i.e. +)
reduction operations.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 50 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Note that when reduction clause is specified for OpenACC parallel directive, a private copy of reduction variable is
created for each gang. Reduction result is available on region exit.

When reduction clause is used with OpenACC loop directive, private copy is created for each thread
implementing loop iterations. Result aviability depends on loop parallelization level and reduction variable
properties. If loops is parallelized on level lower than gang and reduction variable is defined as gang-private, then
reduction result is avaiable on loop exit, otherwise it is avialable on parallel or kernels region exit.

Thus, the following usage of reduction clause is incorrect:

 Invalid usage of OpenACC parallel clause with reduction operations

#pragma acc parallel
{
 #pragma acc loop reduction(+:sum)
 for (i = 0; i < NK; i++) {
 sum = a[i] + b[i]
 }
 #pragma acc loop
 for (i = 0; i < NK; i++) { // sum does not hold desired value at that point
 a[i] = a[i] / sum
 }
}

11.1.3 OpenACC tile clause
Tile clause can be used to instruct compiler to convert one more loops (tightly nested) into tiled form — each loop
will be replaced with outer loop iterating across tiles and inner loop iterating across iterations in a tile.

This transformation allows to improve data access locality.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 51 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Tiled matrix multiplication

#pragma acc parallel loop
for (int i=0; i < n; i++) {
 #pragma acc loop tile(8,8)
 for (int j=0; j < n; j++) {
 for (int k=0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

// Compiler may transform it to something like the code below (assume n % 8 == 0)

#pragma acc parallel loop
for (int i=0; i < n; i++) {
 #pragma acc loop
 for (int t1=0; t1 < n / 8; t1++) {
 #pragma acc loop
 for (int t2=0; t2 < n / 8; t2++) {
 #pragma acc loop
 for (int j=0; j < 8; j++) {
 #pragma acc loop
 for (int k=0; k < 8; k++) {
 c[i][t1 * 8 + j] += a[i][t2 * 8 + k] * b[t2 * 8 + k][t1 * 8 +j];
 }
 }
 }
 }
}

Note: tiling is not supported in the current release of PathScale ENZO solution, it will supported in future releases.

11.1.4 Levels of parallelism
11.1.4.1 OpenACC levels of parallelism

OpenACC defines three levels of parallelism — gangs, workers and vector lanes.

Roughly speaking, they can be associated with CUDA thread_blocks, warps and threads.

When declaring parallel region number of gangs, number of workers in each gang and number of vector lanes in
each vector may be specified using num_gangs, num_workers and vector_length clauses; for the kernels region
compiler infers optimal parameters based on source code analysis.

num_gangs clause specify how many gangs will execute the region and thus will always affect the execution.
num_workers and vector_length clauses control execution only for loops enabling worker- or vector-level
parallelism (either explicitly forced by user or as a result of compiler auto-vectorization).

These execution parameters may be defined as device-specific using device_type clause.

By default compiler automatically distributes loop (or loop nest) itertations between gangs, workers and vector
lanes.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 52 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Note that the optimal value of gridification parameters is dependent on the loop nest and on the targeted
hardware.

gang, worker and vector clauses of loop directive may be used to explicitly distribute loop iterations across
specific levels of parallelism.

If no explicit clauses are specified, then the compiler will make a decision according to what level of parallelism is
available — for example if top level loop is marked with gang clause, then nested loop iterations will be distributed
across workers and/or vector lanes.

In case of parallel region, implementation will used either explicitly specified or inferred dimension sizes for each
level.
In case of kernels region it is allowed to specify arguments for gang, worker and vector clauses. Worker and
vector clause arguments specify number of workers in gang and vector length respectively. Gang clause
arguments may be used to specify both gangs count (num argument) and chunks size (static argument).

11.1.4.2 OpenMP levels of parallelism

OpenMP defines three levels of parallelism — teams, threads and simd lanes.

Roughly speaking, they can be associated with CUDA thread_blocks, warps and threads.

Default OpenMP entity capable of code execution is a thread. Team of threads is allocated when parallel region is
encountered, their number may be controlled by num_threads clause.

OpenMP loop construct is used to distribute loop iterations across individual threads.

In a host-device execution context (introduced by target directive) it is possible to create league of thread teams,
by means of teams directive; num_teams clause is used to specify number of teams in the league.

OpenMP distribute construct is used to distribute loop iterations across teams in a league.

On the fine-grained level, it is possible to distribute loop iterations across lanes of SIMD instructions using simd
directive.

11.1.4.3 Levels of parallelism: examples

OpenACC OpenMP

//Loops gridification will be chosen by
implementation
#pragma acc parallel loop
for (i=0; i < n; i++) {
 #pragma acc loop
 for (j=0; j < n; j++) {
 ...
 }
}

// Team-level gridification
#pragma omp parallel for
for (i=0; i < n; i++) {
 // Team will be created
 // for each thread
 #pragma omp for
 for (j=0; j < n; j++) {
 ...
 }
}

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 53 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

//Loop will be gridified with vector
//length of 8 and 8 workers in a gang
#pragma acc parallel loop worker vector
num_workers(8) vector_length(8)
for (i=0; i < n; i++) {
 ...
}

//Loop will be gridified with 8
threads //in a team and safe SIMD lenght
of 8
#pragma omp parallel for simd
num_threads(8) safelen(8)
for (i=0; i < n; i++) {
 ...
}

#pragma acc parallel num_gangs(256)
// distribute across gangs
#pragma acc loop gang
for (int i = 0; i < n; i++) {
 // distribure across workers and
 vectors
 #pragma acc loop worker vector
 for (int j = 0; j < n; j++) {
 // execute sequentially
 for (int k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

#pragma omp target
#pragma omp teams num_teams(256)
// distribute across gangs
#pragma omp distribute
for (int i = 0; i < n; i++) {
 // distribure across workers and
 // vectors
 #pragma omp parallel for simd
 for (int j = 0; j < n; j++) {
 // execute sequentially
 for (int k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

11.1.5 Collapse clause
Collapse clause can be used to apply loop directive to multiple tightly nested loops. Integer argument of the
clause defines how many of tightly nested loops to collapse — i.e. set of their iterations will be linearized and
distributed across specified levels of parallelism.

This clause may be used accompanying to gang, worker and vector OpenACC clauses and with distribute, for,
simd OpenMP directives to apply parallelism level specification to multiple tightly nested loops— to hint compiler
that a group of tightly nested loops should be scheduled on the same level(-s).

OpenACC OpenMP

#pragma acc kernels
// distribute iterations of "i" and "j"
loops across 256 gangs
#pragma acc loop collapse(2) gang(256)
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {

#pragma omp target
#pragma omp teams num_teams(256)
// distribute iterations of "i" and "j"
loops across 256 teams
#pragma omp distribute collapse(2)
for (int i = 0; i < n; i++) {

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 54 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

 // distribute iterations across
 // workers in each gang
 #pragma acc loop worker
 for (int k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

 for (int j = 0; j < n; j++) {
 // distribute iterations across
 // team threads
 #pragma omp parallel for
 for (int k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

// distribute all iterations of loop
nest across workers and vector lanes
// inside single gang (~ CUDA
threadblock)
#pragma acc parallel loop worker vector
#pragma acc collapse(3)
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

// distribute all iterations of loop
nest across threads and simd lanes
// inside single thread team (~ CUDA
threadblock)
#pragma omp target
#pragma omp parallel for simd
#pragma omp collapse(3)
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}

11.2 OpenACC Cache management
 OpenACC cache directive provides a way to specify a hint for code generator on which range of values should be
stored in the top-level cache.

The syntax of cache directive is the following:

#pragma acc cache(var-list)

Cache directive is allowed only inside (in the beginning) of the loop. Only array variables or sub-array
specifications may be specified as its arguments.

Below is the example of cache directive usage.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 55 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

#pragma acc parallel loop copy(B) copyin(A)
for (i=0; i < n; i++) {
#pragma acc cache(A[i * TILE_SIZE, TILE_SIZE], B[0:n])
 for (j=0; j < n; j++) {
 B[j] = A[i * TILE_SIZE + j] * B[j];
 }
}

Cache directive is not supported in the current release of PathScale ENZO compiler, but may be supported in
future releases.

12 Environment variables

12.1 OpenACC environment variables
OpenACC specification defines two environment variables: ACC_DEVICE_TYPE and ACC_DEVICE_NUM.

ACC_DEVICE_TYPE environment variable defines a default device type for accelerated code offloading.

ADD_DEVICE_NUM defines number of devices of ACC_DEVICE_TYPE type to be used by runtime.

These environment variables are not supported in the current release of PathScale ENZO compiler, but may be
supported in future releases.

12.2 OpenMP environment variables
OpenMP defines environemtnal variables as part of the standard and please refer to OpenMP standard for the
exact list.

13 Runtime API

13.1 OpenACC Runtime API
OpenACC specification defines a number of runtime API functions.

First group of API functions is dedicated to device type identification and management

int acc_get_num_devices(acc_device_t); // gets number of available device of specified type
void acc_set_device_type(acc_device_t); // specifies which device type to use for offloading of kernels
acc_device_t acc_get_device_type(void); // gets type of the device to which next kernel will be offloaded
void acc_set_device_num(int, acc_device_t); // tells runtime which device to use
int acc_get_device_num(acc_device_t); // gets which device will be used for next offloaded kernel
int acc_on_device(acc_device_t); // tests if current execution thread is within device of specified type

Next group of two functions allow explicit control over device initialization and shutdown.

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 56 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

void acc_init(acc_device_t); // initialize device of specified type for execution
void acc_shutdown(acc_device_t); // shutdown device and free all acquired runtime resources

Asynchronous execution related API functions group introduce two functions of specific interest:

int acc_async_test(int); // tests for completion of all actions associated with specified stream id
int acc_async_test_all() // tests for completion of all asynchronously launched actions

Also this group includes following function, which may (and it is recommended to) be expressed by means of
OpenACC directives: acc_wait, acc_wait_async, acc_wait_all, acc_wait_all _async.

Last group is data management API functions. All functions on that list may (and it is recommended to) be
expressed by means of OpenACC directives. This group includes following functions:
acc_malloc, acc_free, acc_copyin, acc_present_or_copyin, acc_create, acc_present_or_create, acc_copyout,
acc_delete, acc_update_device, acc_update_self, acc_map_data, acc_unmap_data, acc_deviceptr, acc_hostptr,
acc_is_present, acc_memcpy_to_device, acc_memcpy_from_device.

Besides API functions listed above OpenACC specification defines a set of target-specific API functions, which is
not covered by the current document.

13.1 OpenMP Runtime API

OpenMP runtime defines large number of runtime API functions. Please refer to OpenMP standard for the exact
list of API functions and their semantics.

14 ENZO Supported HWA
14.1.1 Hardware Accelerators

PathScale ENZO supports NVIDIA Tesla products from Kepler class or newer, AMD discrete GPU Hawaii class or
newer using the open source AMDGPU driver 3.19+ and native execution on Cavium many-core ThunderX.

Glossary
Сlause OpenACC clause used as parameter of OpenACC directive

CUDA Programming language for the NVIDIA CUDA compatible
hardware

Device A particular HWA device

Directive OpenACC directive

Hardware Accelerators (HWA) A device used to speedup segments of an application. Typical
examples of a an HWA are : GPU, FPGA, or streaming units
(SSE, ...).

ENZO runtime API Runtime library linked with the ENZO program to manage the
execution of the offloaded code region

ENZO runtime callbacks API that provides the ENZO runtime with all the necessary

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 57 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

services to execute a target codelet

main thread Process that executes the original code

Remote Procedure Call (RPC) a RPC denotes the remote execution of a codelet in a HWA

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 58 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

Bibliography
The OpenACC Application Programming Interface, Version 2.0, 2013
The OpenMP Application Programming Interface, Version 4.0, 2013

This information is the property of PathScale Inc. and cannot be used, reproduced or transmitted without authorization .
Page 59 Copyright © 2016 PathScale Inc. - DOC-ENZO-06-23-2016

